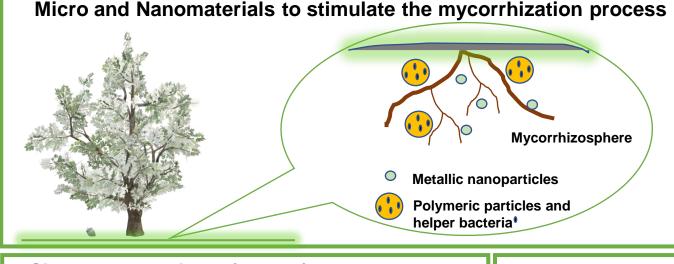
## Truffle farming and nanomaterials: a new technology for the optimization of the mycorrhization process and release of "helper" microorganisms

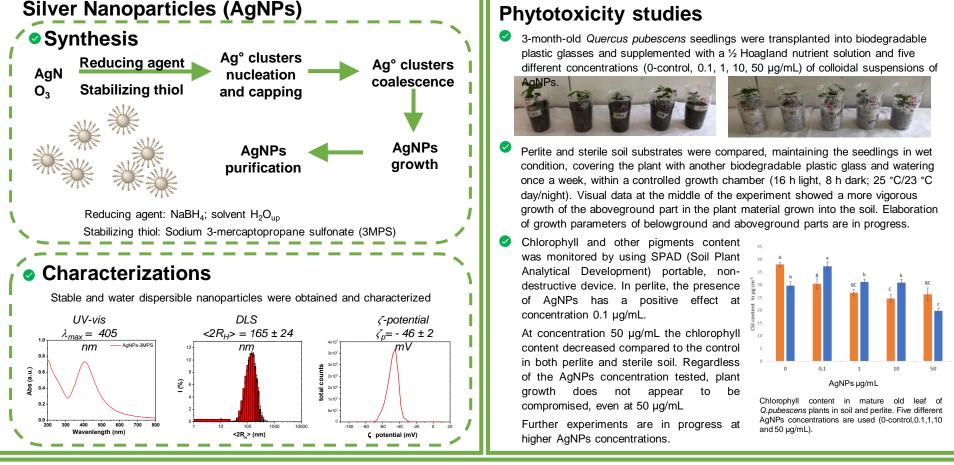
I. Fratoddi,<sup>a</sup> E. Bodo,<sup>a</sup> S. Cerra,<sup>a</sup> T.A. Salamone,<sup>a</sup> F. Hajareh Haghighi,<sup>a</sup> M. Bovi,<sup>b</sup> M. Bonaconsa,<sup>b</sup> E. Kuzminsky,<sup>c</sup> C. Morales-Rodriguez,<sup>c</sup> S. Pagliarani,<sup>c</sup> A. Vannini<sup>c</sup>

<sup>a</sup> Department of Chemistry, Sapienza University of Rome, Italy; <sup>b</sup>Nanomnia srl via di Mezzo 46, 37059 Zevio, Verona; <sup>c</sup> Department for Innovation in Biological, Agrifood and Forest Systems (DIBAF), Università Della Tuscia. Via S. Camillo de Lellis, Viterbo, 01100, Italy Email: Ilaria.fratoddi@uniroma1.it; vannini@unitus.it




## Introduction




Truffle farming is synonymous with specialized plantations where the quality of the starting material, that is the plant with the mycorrhiza, determines its productivity and economic sustainability. The mycorrhizal phase still represents a crucial point in the process and the study of the rhizospheric microbiome in the process of mycorrhizal symbiosis through the action of 'helper' microorganisms is of crucial importance.

The **TANA project** is part of this complex context, in which research groups from the University of Tuscia, Sapienza, in collaboration with the start-up Nanomnia, thanks to funding from LazioInnova regional funding agency for innovation of Regione Lazio, have proposed a new synergistic approach for the enhancement and optimization of truffle farming processes thanks to the combined use of nanotechnologies.



Inorganic compounds, bacteria and viruses contribute to the complexity of the soil biota; among these, bacteria are the most abundant and many of them are classified as MHB (mycorrhiza helper bacteria) because they are able to stimulate the formation of mycorrhizal symbiosis and its vitality.

In this context, nanomaterials can act as carriers for bioactive species and at the same time can be effective in stabilizing and protecting encapsulated molecules / microorganisms (fungi and bacteria), favoring their gradual release into the environment.



## **Conclusions and perspectives**

These preliminary results encourage the study of inorganic nanoparticles and polymer/nanoparticle composites, to be used as carriers of microorganisms in the soil, to improve the rhizosphere formation by providing a consistent source of fungi and bacteria capable of interacting with the root system and the microbiome of the soil. The objective of TANA project is therefore to develop a new biotechnological manufacturing product based on the use of nanotechnologies, functional to the truffle supply chain for *Tuber melanosporum* (precious black truffle) in the process phase that concerns the production of high quality mycorrhized plants, for productive plantations